
values found for the q*j into Eqs. (16) and (17) gives an approximate solution of problem 
(3)-(12). 

Figure 2 shows the results of a numerical calculation of the temperature distribution 
in the system calculated on a BESM-6 computer for the following values of the parameters: 
l, = 200 W/m,deg, l= - I00 W/m,deg, a ~ 2oi0 -s m, b = 4,i0 -s m, c = 10 -2 m, d = 2,i0 -2 m, 
a = 104 W/m2,deg, fo = 10 s W/m ~, M = 5. The lower limit of the variation of the variables 
was taken as qLj m --fo, the upper limit qUj = fo, and the initial approximation qj = 0. 

In order to compare the approximate solution found by the scheme described by steps 
1-4 with the analytical solution, problem (.3)-(12) was solved for d = c. The maximum dis- 
crepancy between the analytical solution and that obtained by using the proposed scheme does 
not exceed 3.3% (Table i). The solution of this problem by the net-point method using the 
complex of codes of the KSI-BESM-6 program [5] is much inferior to the proposed method in 
the expenditure of machine time for the same accuracy of the solution. 

NOTATION 

Ui, Uj, temperature distribution functions in i-th and J-th regions; n, unit vector in 
direction of outward normal to boundary of region; li, lj, thermal conductivities of i-th 
and J-th regions; L, number of matching boundaries; x, y, axes of Cartesian coordinate sys- 
tem; ~, heat-transfer coefficient; f(x), heat flux distribution function; M, number of coef- 
ficients in step function representation of q(x). 
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. 

3. 

. 
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APPLICATION OF DIMENSIONAL ANALYSIS TO THE PROBLEM OF THE 

ACTION OF ULTRASOUND ON AIR IN A CAPILLARY TUBE 

N. P. Migun, P. P. Prokhorenko, 
and S. P. Fisenko 

UDC 533.601.1:534-8 

By using dimensional analysis an expression is obtained for the air pressure 
change in a capillary tube channel caused by the effect of ultrasound. A com- 
parison with experimental results is performed. 

An analysis of the dimensionality of the quantities governing a physical phenomenon af- 
fords a possibility, in a number of cases, of obtaining characteristic relationships compara- 
tively easily, which connect these quantities in a mathematical description of the phenomenon 
[i]. Dependences of the air pressure in channels of dead-end capillary tubes placed upright 
at a short distance from the concentrator on different parameters were experimentally ob- 
tained in [2]. It was shown that the main variables on which the P in the channel depends 
are the amplitude of the concentrator A displacement and the frequency of the ultrasonic 
oscillations f, the inner tube diameter d, and its wall thickness A, as well as the magnitude 
of the effective gap ~*, which equals the distance between the tube endface and the lower 
position of the oscillating concentrator. Moreover, characteristics of the medium in which 
the ultrasonic oscillations are propagated and the flow which causes the change in pressure 
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in the capillary tube channel should be included. In this case this is the air density 0 
and viscosity ~, as well as the velocity of sound propagation c therein. 

It is seen from the above that P depends on eight variable parameters. If the mass M, 
time T, and length L are taken as fundamental units of measurement in analyzing the dlmen- 
sionality of the phenomenon under examination, then to express P by using them will evident- 
ly depend on five dimensionless criteria. So great a quantity of criteria makes this ex- 
pression hardly suitable for practical application. Hence, the increase in the number of 
fundamental measurement units is quite urgent. 

Two kinds of processes occur in our experiments: acoustic, i.e., the propagation of 
ultrasonic oscillations, and aerodynamic, i.e., the flow of this medium in a tube channel 
and in the gap between the concentrator and the tube. Hence, we can formally introduce two 
length and time measurement scales, which refer to the acoustic and aerodynamic processes. 
Let T a and T denote the time measurement scales in acoustics and aerodynamics, respectively. 
Let us analogously introduce the length measurement scales L a and L. Moreover, we use the 
extension of dimensional analysis [3] associated with the introduction of several mutually 
independent length measurement units in different directions. In the problem under con- 
sideration, the axial (z) and radial (r) directions in a cylindrical coordinate system are 
such directions. Hence, the mass M, times T and Ta, and also lengths Lz, Lr, and L a are 
the fundamental measurement units in our problem. Let us note that in this case there is 
no separation of the length measurement scales into directions in the acoustic process since 
ultrasonic oscillations act mainly in the axial direction. 

To compose the dimensionality equation, let us use the energy intensity of the ultra- 
sonic oscillations I, which has a deeper physical meaning, in place of the displacement 
amplitude A. Let us write the dimensions of the quantities in the problem: 

[ p ]  = MLzL~2T-~ ;  [I]  = M L a L z L V 2 T ~ 2 T - ' ;  [f] = T ~ ' ;  [9] = M L ? I I ' V  2; 

h j ~ - - l l l - - ~ l ~ - - 2 .  [c] = L~Tj1;  [d] = L~; [~t] . . . . . .  z ~ , [6"] = L~; [AI = L r. 

Let us clarify the writing, e.g., of the dimensionality of the dynamic viscosity coefficient 
~. For the axial and radial flows taking place in the experiments, the dlmensionallty of 
is written as [~]z = MT-*Lz-* and [~]r = MT-*LzLr -a" The relationship between the axial 
and radial flows changes as each of the quantities ~*, A, or d varies; hence, a variable ex- 
ponent characterizing this relationship should enter into the dlmensionallty of ~. It can 
be assumed that in the general case 

l 

I~l = {(t~lr) ~ ([~13"} ~ + " ,  

where n and m are any real numbers (n # m). 

D2 n 

[p.] = (ML~LV2T-l~  "+" ( M L 7 1 T  - 1 )  . ' ,+~ 

where a is any real n u m b e r .  

H e n c e ,  

m--n 2m 

M T - I L  m+. L~ m+~ _-= MT- iL~-~I~-~- ,  

The pressure P can be represented in the form 

p = la[bpkcmd"~t q ep (M, N), 

where tp(M, N) is a function dependent on two dimensionless criteria M and N which are not 
yet known. Now, let us form the dimenslonallty equation 

n i~-l[1-ar=-2 ~ (AaTj1jm. ML~L72T  -2  _= (ML~L, LT-~T'~2T-1)aT~ b (ML-~I LF2) k L~ ~ . . . . .  ~ ~ ,  ~ 

After standard procedures used in dimensional analysis, we obtain 

l 

) 
P = p~d2~c  2~ q) t , d ' fc~t6 *a ' 

(i) 
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which admits of experimental confirmation. Independently of the value of the unknown ex- 
ponent u, the pressure becomes equal to P/n 2 for a simultaneous n-times change in the quanti- 
ties d, A, and 6*. A series of experiments performed with capillary tubes with d ffi 0.2-1.2 
nnn and A ffi 0.5-6.5 mm showed good agreement between this deduction and the experimental re- 
sults. 

Let us now make the following assumption. Let us assume that the energy intensity of 
the ultrasonic oscillations is expressed, in our case, by the formula obtained for a plane 
way e 

I = 2~2A212pc. 

Then (i) is converted into an expression in which only the quantities being measured and 
those tabulated enter: 

I 

[ A 4 " - 4 .  f==-2~z ' A 
~6,= �9 (2) 

Therefore, the similarity criteria of the problem under consideration are the following 
dimensionless variable complexes: 

N = A/d and M = AZ[pd=/~6 *~. 

Let us note that ~ cannot be zero since otherwise the pressure dependence on the gap 
~* existing in experiments would drop out and also the variability in the sign of the func- 
tion ~, resulting from the experimental fact of the existing of both an excess pressure and 
rarefaction depending on the quantities d and A observed in [2], vanishes. The case 

= 2 corresponds to taking account of only the axial air flow. It can be assumed that the 
flow in this direction acquires greater and greater value as the gap increases; hence, we 
have constructed a dependence of the function ~ on the criterion M for different values of N 
for this case. Results of experiments performed at the frequencies 21.7 and 41.9 kHz for 
capillary tubes with d = 0.2-1.2 nun, A - 0.5-6.5 mm and for 6" > 5A were used. The curves 
presented in the figure indicate the satisfactory agreement between the expression obtained 
and experiment. 

An analysis of the experimental results obtained with thick-walled tubes for 6" < 5A, 
when the air flow direction in the gap varies for definite values of N and changes in A or 
6*, indicates the presence of an extremum (at least one) in the function ~ depending on M. 
Thus, e.g., the dependence of the pressure on 6" has a maximum in the case N > 5 and A > 5, 
the other parameters being constant. However, thequestionof thespecific valueof~suitable 
for practical utilization for 6" < 5A remains open. 

112 



NOTATION 

P, pressure; A, amplitude of the concentrator displacement; f, frequency; I, energy in- 
tensity of the ultrasonic oscillations; d, inner diameter; A, wall thickness of the capil- 
lary tube; ~*, magnitude of the effective gap; p, density; ~, coefficient of dynamic viscos- 
ity; c, speed of sound in air. 
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SPEED OF ULTRASOUND IN WATER OVER A WIDE RANGE OF 

PRESSURE AND TEMPERATURE 

A. M. Mamedov UDC 534.22 

Experimental data are used to derive a formula for determination of the speed of 
sound in water over a wide range of state parameters. 

The speed of sound in water was studied over a wide range of temperature and pressure 
in [i], which presented its experimental results in the form of a table for the pressure 
range of 3-30~ at pressures to 70 MPa, and from 75 to 374~ for pressures to 50 MPa. As 
the authors noted, the method proposed therein allows determination of the speed of sound in 
water with quite high accuracy. 

The present author has attempted to use the experimental data of [i] to define the speed 
of sound in water as an analytical function of temperature and density. 

The speed of sound in liquid n-alkanes [2] has been described by a formula 

�9 r 

u = :l~ -i- B (p - -  ps). ( 1 )  

Tests showed that the speed of sound isotherms in water as a function of (0 --0s), ac- 
cording to Eq. (i) for ii isotherms (0, i0, 20, 30, i00, 130, 150, 200, 250, 300, and 350~ 
presented in the study, were straight lines. The p values for these isotherms at correspond- 
ing pressures, presented in Table i, were calculated from the equation of the isotherm [3] 

pv  = 1 + B p - F  Ep-  4 ( 2 ) *  
RT 

It should be noted that the specific volumes calculated with Eq. (2), as is evident from 
Table 2, agree quite well with the tolerances of the International Table for water and water 
vapor [4]. 

The saturated water densities were taken from [4], since Eq. (2) does not provide the 
required accuracy for Ps at high temperatures. 

Commencing from the linearity of the isotherms, according to Eq. (i), the least-squares 
method was used to find the speed of sound values u s ' for saturated water and the acoustical 
coefficient B for all ii isotherms. 

Considering the complex form of the curves u s ' = f(t) and B = ~(t) shown in Fig. i, it 
was necessary to employ polynomials for their description with satisfactory accuracy. These 
polynomials are easily solved by a Horner type Zait i system. Seventh-order polynomials were 

*For water, R m 4.6151 bar-cmS/g/deg. 
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